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ABSTRACT: A library of 484 imidazole-based candidate inhibitors was tested against 24 protein kinases. The resulting activity
data have been systematically analyzed to search for compounds that effectively differentiate between kinases. Six imidazole
derivatives with high kinase differentiation potential were identified. Nearest neighbor analysis revealed the presence of close
analogues with varying differentiation potential. Small structural modifications of active compounds were found to shift their

inhibitory profiles toward kinases with different functions.

B INTRODUCTION

Profiling of compound collections against target families is an
important source of activity data for chemical biology and drug
discovery." Profiling has become a popular approach to
characterize ligand-based relationships between targets” and
identify new active compounds, especially for high-profile
therapeutic targets such as G protein coupled receptors™* or
protein kinases.® Target profiling experiments are frequently
carried out in pharmaceutical research environments, but these
proprietary results are rarely disclosed, with occasional
exceptions.”® Exemplary profiling studies have substantially
advanced our understanding of structure—activity relationships
(SARs) and selectivity patterns within important target families.
For example, profiling of kinase inhibitors against different
subfamilies of the kinome revealed unexpected cross-reactivity
of many kinase inhibitors,” hence providing insights into
polypharmacological behavior of clinically relevant inhibitors.
In addition, molecular network analysis has been applied to
analyze kinase profiling data and rationalize activity patterns.®
On the basis of kinase profiling data,® matched molecular pair
analysis has also been carried out to propose inhibitors with
increased kinase selectivity.” However, kinase profiling is a
laborious and expensive part of medicinal chemistry programs,
as it requires large assay efforts and high costs. Consequently, in
silico support or guidance in study design and data analysis,
even if approximate, should be of considerable help for the
community. Several computational studies have analyzed
available kinase activity data. For example, machine learning
models have been derived to search for kinase inhibitors on a
large scale'® or process profiling data and predict cross-
reactivity of kinase inhibitors."!

Herein, we report a kinase profiling experiment using a
library of imidazole-based adenosine triphosphate (ATP) site-
directed kinase inhibitors. Different from previous investiga-
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tions, much emphasis has been put on the exploration of kinase
differentiation potential of candidate inhibitors. The concept of
kinase differentiation potential is distinct from kinase selectivity
of inhibitors. Compounds with differentiation potential must
display significantly varying potency levels against multiple
kinases.

B METHODS AND MATERIALS

Kinases, Inhibitors, and Profiling Assays. A set of 484
pyridinylimidazole based inhibitors with general structure I (Scheme
1) were tested for kinase inhibition using 24 different kinases (AKT1,
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ARKS, Aurora-A, Aurora-B, BRAF VE, CDK2/CycA, CDK4/CycD1,
COT, AXL, EGE-R, EPHB4, ERBB2, FAK, IGFI1-R, SRC, VEGE-R2,
CK2-al, JNK3, MET, p38-a, PDGFR-§, PLK1, SAK, TIE2). These
kinases were selected because they are implicated in different forms of
cancer. The 484 different derivates were synthesized and characterized
(including their purity) as described previously.">™"” Kinase activity
data were generated with the ProQinase free choice biochemical kinase
assay system. Activities were determined as residual activities (% of
control)."®

Initially, compounds were screened at a single concentration of 10
UM. Subsequently, titration curves were generated for clearly active
compounds. Then the coefficient of variation (CV) between the initial
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screen and subsequent assays was determined for each kinase. The
average CV was only 7.7% (for only 3 of 24 kinases, values of 10—12%
were obtained), thus indicating that activity data for the initial single-
point experiments were reliable.

Analysis of Kinase Differentiation Potential. Residual activities
for single-point measurements were logarithmically transformed into a
numerically stable data format for subsequent analysis, as illustrated in
Figure 1. According to this transformation, a logarithmic value of 2
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Figure 1. Scoring scheme. Measured residual activities (ra) were
initially converted into logarithmic values used for the calculation of
the raw differential potential (rawggp,) of each compound.
Logarithmic values were adjusted such that 2 indicated (nearly)
complete inhibition and 0 no inhibition and aligned with the original
experimental binning scheme. Color code is as follows: dark blue,
<20%; blue, >20%, <60%; light blue, >60%, <80%; white >80%
residual wild-type activity.

indicates (nearly) full inhibition and a value of 0 no inhibition. On the
basis of these transformed activity values, a raw target differentiation
potential score was calculated as follows (see also Figure 1):

raWjifpor(A) = Z Iralog T; — ralog le
1<ij<24

j>i

Here, the logarithmic terms refer to the transformed activity of a
compound to targets T; and T, respectively. For each compound, all
possible target pairs were formed and activity differences were
summed. Thus, according to this formalism, compounds have high
differentiation potential if they display large activity differences against
many target pairs. Raw scores were then transformed into standard Z-
scores and normalized through mapping onto a cumulative
distribution function assuming a normal distribution, yielding final
scores between 0 (lowest differentiation potential) and 1 (highest
potential). This scoring scheme represents a further refined and
generalized version of a binned cumulative differentiation score
previously used to characterize ligands of different target families."®

Nearest Neighbor Analysis. For selected active compounds,
nearest structural neighbors were identified on the basis of systematic
pairwise comparisons. For this purpose, Tanimoto simila.rity20 was
calculated using MACCS structural keys®' as a molecular representa-
tion. As a nearest neighbor criterion, a threshold value of more than
80% MACCS Tanimoto similarity was applied.

Activity Profiles. For preferred inhibitors and their nearest
neighbors, activity profiles were generated using the activity-based
color code shown in Figure 1. In these profiles, each bin corresponds
to the activity against a specific kinase.

B RESULTS AND DISCUSSION

Kinase Inhibitor Data. The complete matrix reporting
activities for all 484 compounds against the 24 kinases is
provided in Table SI1 of the Supporting Information. All
residual activities were transformed into a logarithmic format
(as described above) and subjected to computational analysis.

Compound Differentiation Potential. Figure 2 shows
the distribution of normalized Z-scores for all test compounds.
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Figure 2. Distribution of compound differentiation potential. The
histogram shows the distribution of Z-scores for all test compounds. Z-
scores were normalized to the value range between 0 (lowest
differentiation potential) and 1 (highest potential) and binned on the
X-axis into 10 equally sized score intervals. The Y-axis reports the
number of compounds falling into each interval. The differentiation
potential of the compounds (normalized Z-scores) was color-coded
using a spectrum ranging from red (lowest differentiation potential)
over yellow (intermediate) to green (highest differentiation potential).

The score distribution directly reflects the kinase differentiation
potential of the inhibitors. The distribution reveals that most of
the compounds fell within the range of low (red) to
intermediate (yellow) differentiation potential, as one might
expect for ATP site-directed inhibitors. However, the
distribution also contained a notable tail toward high (green)
differentiation potential. Hence, a small subset of test
compounds displayed a much higher than average potential
to differentiate between the selected cancer-relevant kinases.
Preferred Inhibitors. On the basis of the score distribution
in Figure 2, we selected the imidazole derivatives with the
highest differentiation potential, falling into the scoring interval
[0.78, 1.00]. The structures of these in part closely related
analogues are shown in Figure 3 with their activity profiles.
In the next step, nearest structural neighbors of each of the
six top-scoring compounds were identified in the data set and
their differentiation potential was compared, as reported in
Figure 4. Here, notable differences were observed. For example,
the top-scoring inhibitor with the highest differentiation
potential had only one nearest neighbor, the fourth-ranked
compound (Figure 4a). Equivalent observations were made for
inhibitors at rank 3 (Figure 4c) and 4 (Figure 4d). By contrast,
the inhibitor at rank 2 (Figure 4b) had a total of 12 nearest
structural neighbors with variable differentiation potentials.
Similar observations were made for inhibitors at ranks S (Figure
4e) and 6 (Figure 4f), having four and six neighbors,
respectively. These compounds also displayed low to
intermediate differentiation potential. From these compound
series, SAR patterns emerged, as discussed in the following.
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Figure 3. Top-ranked kinase inhibitors. Shown are the six top-ranked
compounds with highest differentiation potential (labeled with their
ranks) together with their activity profiles (color-coded according to
Figure 1). In the activity profile, each bin is assigned to one of the 24
kinases.

SAR Analysis. All tested compounds were initially designed
as potential p38a MAP kinase inhibitors. The major novelty of
these imidazole-based series is the 2-thio substitution, which
greatly reduces their ability to bind to cytochrome P450 (CYP)
enzymes by complexing the iron in the active site. This CYP
interaction presented a general problem associated with first-
generation imidazole-based inhibitors. Kinase profiles of a large
set of structurally closely related inhibitors have not yet been
described. However, the results reported herein demonstrate
how even minor structural modifications of closely related
inhibitors can alter the inhibition profile toward kinases other
than p38, including representatives of kinase families with
rather different functions such as receptor tyrosine kinases.

The computational approach designed for the analysis of the
kinase profiling matrix did not take structural information about
the kinase ATP binding site into account. Nevertheless, it
detected activity differences between compounds that were
consistent with structural data of p38—inhibitor interactions.
Figure S shows an outline of p38 bound to the ATP site-
directed pyridinylimidazole inhibitor SB203580,%* as revealed
by the X-ray structure of the complex.”® A critically important
hydrogen bond is formed between the pyridin-4-yl group and
the backbone NH of Metl09. Another hydrogen bond is
formed between LysS53 and N-3 of the imidazole core. In
addition, there is a 7— stacking between Tyr35 and the phenyl
ring of the inhibitor. The 4-fluorophenyl ring is accommodated
in hydrophobic region I, while hydrophobic region II is not
occupied. On the basis of these interaction patterns, structural
modifications of imidazole-based inhibitors that led to changes
in their differentiation potential according to Figure 4 can be
rationalized. For example, the compounds in Figure 4b,c very
well reflect the relevance of the 7—r interaction of the S-
residues at the R3 position with Tyr3$ in p38, as indicated in
Figure 5. In Figure 4b, 2 with an acetonitrile group at this
position had overall highest differentiation potential, whereas
smaller or larger (aromatic) substituents at this position led to a
gradual loss of this potential. Phenyl-based substituents such as
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Figure 4. Top-ranked inhibitors and nearest neighbors. In (a) to (f),
the six compounds with highest differentiation potential are shown
together with their nearest structural neighbors (ie., all other
compounds having at least 80% 2D structural similarity). In the
center, each of the six top-ranked compounds is represented as the
root node and nearest neighbors form leaves. The nodes are color-
coded according to differentiation potential as in Figure 2. The activity
profile of the root compound is displayed, and compound structures
are drawn proximal to their nodes. Multiple nearest neighbors are
arranged according to decreasing differentiation potential from the left
to the right.

m—n interactors were generally more difficult to accommodate
than the acetonitrile group because they required a coplanar
orientation for best interactions. As illustrated in Figure 4c, loss
of R-group flexibility to adopt a favorable geometry for the 7—z
interaction also resulted in a penalty and altered the
differentiation potential observed for a compound with a
conformationally unrestricted phenyl group.

In our kinase panel, JNK3 was most closely related to p38.
The only difference in the ATP-binding site of these kinases is
the gatekeeper residue, which is Thr in p38 and Met in JNK3.
Met is larger but has a flexible side chain and can
conformationally adapt. Given the similarity of these kinases,

dx.doi.org/10.1021/jm3014508 | J. Med. Chem. 2012, 55, 11067—11071



Journal of Medicinal Chemistry

Brief Article

Thr106

His107 N— OLy553
CH. hydrophobic
N7 NH OY%/ > pocket | NH
Leutos =X, HN HO E H !
CHy" ‘N
/
H,C HN O H phosphate
/ HO binding site
o N\ '{l
N—-H--N__ N { Tyr35
Met109 H 0
Hsc-S\/ ey Sla
A
hydrophobic .
: ribose
region Il binding site

Figure S. p38—inhibitor complex. Shown is the structure of the ATP
binding site in p38 in complex with the pyridinylimidazole inhibitor
SB203580.

many compounds inhibited them comparably. However,
nearest neighbor analysis also revealed interesting exceptions.
For example, 2 with its acetonitrile substituent was highly active
against p38 and JNK3. By contrast, 15, a structural neighbor of
2 with a phenyl group at the corresponding position, retained
high activity against p38 but was not active against JNK3.
Similarly, 25, another structural neighbor with an additional
methylene group in the linker presenting the phenyl
substituent, showed reduced activity against P38 and was also
inactive against JNK3. Both of these compounds had overall
only low differentiation potential. In the panel, AKT1 was the
kinase most distantly related to p38. Accordingly, many of the
p38-directed compounds did not inhibit AKT1. However, there
were exceptions among compounds with high differentiation
potential. For example, 1 and 4 strongly inhibited p38 but also
displayed weak activity against AKT1.

Furthermore, very small structural changes between com-
pounds with high differentiation potential preferentially affected
certain subsets of kinases. For example, 1 and 4 were only
distinguished by the presence of a double bond in the linker
between the imidazole core and a phenyl substituent (thus
slightly reducing the conformational flexibility of 4). This
minute change led to overall higher activity of 4 against the
kinase panel than 1. In particular, it affected binding to cyclin-
dependent kinases, against which 4 was active but 1 only
weakly active or inactive. In addition, the presence of a
hydrophilic group in this region of the inhibitors, for example,
in 6, led to a complete loss of activity against these kinases.
Another interesting example was inhibition of PLK1. Among
compounds with significant differentiation potential, only 4, 7,
and 10 inhibited this kinase; all others were inactive.
Compounds 4 and 7 were structurally highly similar, but in
10, the conformationally restricted phenyl substituent was
replaced by an unrestricted naphthalene group. Despite this
change, the activity profiles of all three compounds were overall
similar and distinct from many others.

Differentiation Potential versus Selectivity. Differ-
entiation potential as assessed herein is related to but distinct
from compound selectivity, for which other measures have been
introduced in the kinase inhibitor field. These include, among
others, the Ambit selectivity score** and the thermodynamic
partition index.”> The latter coefficient reflects the partitioning
of inhibitor binding across a panel of kinases at thermodynamic
equilibrium and should thus be calculated on the basis of
equilibrium constants (i.e,, K; or K3). Hence, it is not applicable

to residual activities or other approximate measurements. The
Ambit score (AS) is calculated as the fraction of n tested
kinases that are inhibited by a compound at a given threshold
value of residual activity. Hence, a score of O indicates a
compound that is inactive at the selected threshold and a score
of 1 a compound that is consistently active and nonselective. By
contrast, a target-selective compound obtains a score of 1/n
(close to 0). We have calculated AS values for all compounds
for a threshold value of less than 60% residual activity, as
reported in Table S2 of the Supporting Information. The mean
and standard deviation of the AS distribution are 0.31 and 0.22,
respectively. For 1—6 with the highest target differentiation
potential, scores range from 0.54 and 0.83. Hence, these
compounds would not be considered on the basis of simple
selectivity scoring. At lower levels of residual activity (e.g.,
30%), the scores consistently decrease and equivalent
conclusions are drawn. These results reflect the conceptual
difference between target differentiation potential and target
selectivity of inhibitors. Compounds with differentiation
potential are often rich in multitarget SAR information.

B CONCLUSIONS

Herein we have reported a compound profiling experiment on
a set of cancer-relevant kinases using ATP site-directed
imidazole derivatives, combined with a computational study
to identify compounds with kinase differentiation potential.
Several structurally closely related inhibitors with high
differentiation potential were identified, and SAR features
were explored on the basis of nearest neighbor analysis. In a
number of instances, small structural modifications of closely
related compounds led to substantial alterations of their
inhibitory profiles, in part involving kinases with different
functions. On the basis of these results, the evaluated
compound series should merit further consideration in the
development of selective kinase inhibitors. Furthermore, the
computational approach reported herein is readily applicable to
the analysis of other compound profiling experiments and the
identification of active small molecules with target differ-
entiation potential.

B ASSOCIATED CONTENT
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Table S1 listing complete 484 X 24 kinase profiling matrix and
Table S2 listing the distribution of AS values for all compounds.
This material is available free of charge via the Internet at
http://pubs.acs.org.
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AS, Ambit score; ATP, adenosine triphosphate; CV, coefficient
of variation; CYP, cytochrome P450; diffPot, differentiation
potential; SAR, structure—activity relationship
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